GSEA富集分析-表达量数据应用,组学大讲堂,omics007,因絮玄度,橙子红了没,特别注意:
1. 可开发票(请联系网易客服开票,或者加微信532812110咨询 );
2. 购买课程满299元,可以加入我们的VIP技术交流群。
GSEA是利用基因表达数据(如基因芯片、转录组数据),根据不同的分析目的使用不同的基因集,找到对表型(处理)有影响的功能基因集,是对表达量数据的一种深度应用。其相对于GO和KEGG富集分析优势如下:
1. 不需要对基因进行差异显著的筛选,能保留那些表达变化不大,但是功能重要的基因,而传统的GO和KEGG富集分析是针对有差异的基因进行富集分析,相比之下GSEA分析保留了更多信息。
2. 分析的是基因集而不是单个的基因,因为生物体要出现表型差异,单单通过差异分析是不够的,因为生物体出现某种表型(一两个基因表达存在差异)往往会有一系列与之相关的上游或者下游的基因发生变化,但不一定会有显著差异,因此我们对功能相关的基因作为一个整体做GSEA分析,结果更可靠。
本课程主要包括三大块:
1、GSEA分析简介(包括原理解析及分析时所需的文件)
2、GSEA的下载及数据配置与运行(包括软甲及数据下载,表达数据的格式整理及详细的软件操作分析)
3、GSEA分析结果的解读(带你读懂结果的每一张图每一个表) 适用人群:从事医学、生命科学等领域的医生、老师和学生等
有生物信息分析需求的