相关题库

咨询

其他联系方式

所属系列课程

评价

使用协议与隐私政策

感谢您使用网易云课堂!

为了更好地保障您的个人权益,请认真阅读《使用协议》《隐私政策》《服务条款》的全部内容,同意并接受全部条款后开始使用我们的产品和服务。若不同意,将无法使用我们的产品和服务。

同意
2018 秋季CS294-112深度强化学习,AI研习社,伯克利大学CS294-112《深度强化学习》为官方开源最新版本,由伯克利大学该门课程授课讲师授权AI研习社翻译。 一、课程大纲 第一讲:课程介绍和概览 第二讲:监督学习和模仿学习 第三讲:TensorFlow和神经网络简述 第四讲:强化学习简介 第五讲:策略梯度简介 第六讲:Actor-Critic算法简介 第七讲:价值函数介绍 第八讲:高级Q-学习算法 第九讲:高级策略梯度 第十讲:最优控制和规划 第十一讲:基于模型的强化学习 第十二讲:高级强化学习和图像处理应用 第十三讲:利用模仿优化控制器学习策略 第十四讲:概率和变分推断入门 第十五讲:推断和控制之间的联系 第十六讲:逆向强化学习 第十七讲:探索(上) 第十八讲:探索(下) 第十九讲:迁移学习与多任务学习 第二十讲:元学习 第二十一讲:平行结构和强化学习系统设计 第二十二讲:进阶模仿学习和开放性问题 第二十三讲:客座讲师:Craig Boutilier 第二十四讲:客座讲师:Gregory Kahn 第二十五讲:客座讲师:Quoc Le&Barret Zoph 第二十六讲:客座讲师:Karol Hausman 二、更新时间 隔一周周四更新 三、写在最后:想要参与这门课程的翻译?添加雷锋字幕组微信leiphonefansub为好友,即可报名,译者招募长期有效哦~ 适用人群:本课程将假定学生掌握强化学习、数值优化和机器学习的相关背景知识。
手机课堂
下载App
返回顶部